Order-preserving strong schemes for SDEs with locally Lipschitz coefficients
نویسندگان
چکیده
منابع مشابه
An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients
We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity and integrability conditions, we obtain the optimal strong error rate. We apply this scheme to SDEs widely used in the mathem...
متن کاملA Fundamental Mean-Square Convergence Theorem for SDEs with Locally Lipschitz Coefficients and Its Applications
A version of the fundamental mean-square convergence theorem is proved for stochastic differential equations (SDEs) in which coefficients are allowed to grow polynomially at infinity and which satisfy a one-sided Lipschitz condition. The theorem is illustrated on a number of particular numerical methods, including a special balanced scheme and fully implicit methods. The proposed special balanc...
متن کاملErgodicity For SDEs and Approximations: Locally Lipschitz Vector Fields
The ergodic properties of SDEs, and various time discretizations for SDEs, are studied. The ergodicity of SDEs is established by using techniques from the theory of Markov chains on general state spaces. Application of these Markov chain results leads to straightforward proofs of ergodicity for a variety of SDEs, in particular for problems with degenerate noise and for problems with locally Lip...
متن کاملTheta schemes for SDDEs with non-globally Lipschitz continuous coefficients
Keywords: Stochastic differential delay equation (SDDE) Split-step theta scheme Stochastic linear theta scheme Strong convergence rate Exponential mean square stability a b s t r a c t This paper establishes the boundedness, convergence and stability of the two classes of theta schemes, namely split-step theta (SST) scheme and stochastic linear theta (SLT) scheme, for stochastic differential de...
متن کاملAsymptotic error distribution of the Euler method for SDEs with non-Lipschitz coefficients
In [14, 8] Kurtz and Protter resp. Jacod and Protter specify the asymptotic error distribution of the Euler method for stochastic differential equations (SDEs) with smooth coefficients growing at most linearly. The required differentiability and linear growth of the coefficients rule out some popular SDEs as for instance the Cox-Ingersoll-Ross (CIR) model, the Heston model, or the stochastic Br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2017
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2016.09.013